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Purpose: To generate and investigate a supervised deep learning algorithm for creating synthetic 
computed tomography (sCT) images from kilovoltage cone-beam CT (kV-CBCT) images for adaptive 
radiation therapy (ART) in head and neck cancer (HNC).
Materials and Methods: This study generated the supervised U-Net deep learning model using 3,491 
image pairs from planning CT (pCT) and kV-CBCT datasets obtained from 40 HNC patients. The data-
set was split into 80% for training and 20% for testing. The evaluation of the sCT images compared 
to pCT images focused on three aspects: Hounsfield units accuracy, assessed using mean absolute er-
ror (MAE) and root mean square error (RMSE); image quality, evaluated using the peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM) between sCT and pCT images; and dosimetric 
accuracy, encompassing 3D gamma passing rates for dose distribution and percentage dose differ-
ence.
Results: MAE, RMSE, PSNR, and SSIM showed improvements from their initial values of 53.15 ± 
40.09, 153.99 ± 79.78, 47.91 ± 4.98 dB, and 0.97 ± 0.02 to 41.47 ± 30.59, 130.39 ± 78.06, 49.93 ± 
6.00 dB, and 0.98 ± 0.02, respectively. Regarding dose evaluation, 3D gamma passing rates for dose 
distribution within sCT images under 2%/2 mm, 3%/2 mm, and 3%/3 mm criteria, yielded passing 
rates of 92.1% ± 3.8%, 93.8% ± 3.0%, and 96.9% ± 2.0%, respectively. The sCT images exhibited mi-
nor variations in the percentage dose distribution of the investigated target and structure volumes. 
However, it is worth noting that the sCT images exhibited anatomical variations when compared to 
the pCT images.
Conclusion: These findings highlight the potential of the supervised U-Net deep learningmodel in 
generating kV-CBCT-based sCT images for ART in patients with HNC.
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Introduction 

Head and neck cancer (HNC) has emerged as a prominent global 
health issue, ranking as the sixth most prevalent cancer globally. 
According to estimates from the Global Cancer Observatory, the 
overall incidence of HNC is on an ongoing upward trajectory, with 

predictions indicating an increase of 30% by the end of 2030 [1,2]. 
Due to the presence of multiple critical organs at risk (OARs) close 
to the treatment volume, radiation therapy commonly utilizes 
techniques such as intensity-modulated radiation therapy (IMRT) 
and volumetric-modulated arc therapy (VMAT) [3]. These advanced 
techniques enable precise targeting of the treatment volume while 
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minimizing radiation exposure to surrounding critical structures. 
Nevertheless, the complexity of treatment techniques and anatom-
ical changes can introduce uncertainty, leading to discrepancies 
between the planned and delivered doses. Thus, an innovative ap-
proach called adaptive RT (ART) has been proposed to address this 
challenge. ART involves adjusting the treatment plan to accommo-
date anatomical variations throughout the treatment course [4,5]. 
This is accomplished by assessing the patient's anatomical changes 
and re-calculating the dose distribution based on the updated im-
ages. Typically, these images can be obtained either through a re-
peat computed tomography (CT) scan or by utilizing images cap-
tured on the same day, such as kilovoltage cone-beam CT (kV-
CBCT) [6]. Implementing the repeat CT scan technique would lead 
to an increase in the patient's radiation dose and require additional 
time and labor. Thus, utilizing kV-CBCT images for patient position 
alignment within the treatment room can effectively address these 
limitations. However, the direct application of kV-CBCT images for 
re-planning is constrained due to various factors, including incon-
sistent CT numbers, image quality issues related to scattered arti-
facts and noise, as well as limitations in the field-of-view [7-9]. 
Therefore, prior to utilizing kV-CBCT in ART, it is necessary to per-
form kV-CBCT correction. 

In the existing literature, several techniques have been proposed 
for performing kV-CBCT dose calculation [8-10]. These methods 
encompass (1) the establishment of a calibration curve that cor-
relates Hounsfield units (HU) with electron densities; this curve can 
be defined using either an adapted phantom or patient kV-CBCT 
images. However, it is essential to note that these methods are 
susceptible to image artifacts and patient scatter, which may im-
pact their reliability [9]. (2) the utilization of density assignment 
methods, specifically bulk density override; this method involves 
segmenting an image into different tissue classes, such as soft tis-
sues, air, and bones, and assigning appropriate densities to each 
class. When kV-CBCT images contain significant artifacts, consid-
ering alternative approaches can be a favorable option [11]. How-
ever, it relies on accurate structure segmentation and may result in 
an image with homogeneous tissues [9]. (3) the application of de-
formable image registration; the planning CT (pCT) images are de-
formed to kV-CBCT images, mainly including the deformation im-
age registration and histogram matching methods. While this ap-
proach can effectively correct HU information in kV-CBCT images, 
it demands high accuracy in the image registration algorithm and 
matching method, especially in cases with substantial anatomical 
variations, such as tumor shrinkage or weight loss [12]. Additional-
ly, this approach can be challenging due to inherent limitations in 
kV-CBCT imaging, including noise, low contrast, and a reduced 
field-of-view [13]. Finally, (4) the adoption of artificial intelligence 

algorithms to generate a synthetic CT (sCT); machine learning algo-
rithms, specifically deep learning techniques, can be utilized to 
learn the mapping between kV-CBCT images and pCT images. These 
algorithms can learn intricate relationships and patterns through 
training on a vast dataset of paired kV-CBCT and pCT scans, en-
abling them to generate sCT images from kV-CBCT inputs [14]. 
Several studies have successfully demonstrated significant en-
hancements in CT number accuracy, image quality, and the mitiga-
tion of artifacts, thereby increasing the potential for the clinical 
implementation of ART [14-19]. Typically, there are two approaches 
for employing deep learning methods in sCT images. The first ap-
proach utilizes supervised training with paired images, often imple-
menting algorithms like U-Net [20,21]. Conversely, the second ap-
proach involves unsupervised training with unpaired images, lever-
aging techniques such as generative adversarial networks (GANs) 
[14,16,22]. In order to integrate into clinical practice seamlessly, 
our research primarily concentrates on utilizing the supervised 
U-Net algorithm. This choice is motivated by its straightforward 
implementation, stable convergence, and rapid training process. 
Therefore, this study aims to generate and assess the performance 
of a U-Net deep learning-based algorithm in converting kV-CBCT 
scans to sCT images in terms of HU accuracy, image quality, and 
dosimetric accuracy similarity in the head and neck region.  

Materials and Methods 

1. Patient selection and image dataset 
In this study, we conducted a retrospective analysis using a total of 
3,491 image pairs. The images consisted of paired kV-CBCT scans 
and pCT images obtained from 40 datasets of patients with HNC 
who underwent VMAT between January 2018 and December 2021. 
This study received approval from the Ethics Committee of Chulab-
horn Royal Academy (No. EC 010/2565). The data used for this 
study were collected from the Department of Radiation Oncology 
at Chulabhorn Hospital. For image acquisition, a dedicated 16-slice 
helical Big-Bore CT simulator (Phillips Medical Systems, Andover, 
MA, USA) was utilized to obtain the pCT image datasets. The pCT 
images were obtained using a tube voltage of 120 kVp and an ex-
posure range of 300–400 mAs. The kV-CBCT image datasets were 
obtained using onboard imaging functionality available on the 
TrueBeam linear accelerator (Varian Medical System Inc., Palo Alto, 
CA, USA). These kV-CBCT images were acquired with a tube voltage 
of 100 kVp and an exposure of 150 mAs. In order to minimize the 
impact of anatomical variations, only the kV-CBCT images captured 
during the first fraction before treatment were included in the 
study. The pCT images were characterized by a voxel spacing of 
1.00 mm ×  1.00 mm ×  3.00 mm, whereas the kV-CBCT images 
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had a voxel spacing of 0.51 mm ×  0.51 mm ×  2.00 mm. In terms 
of image dimensions, both the pCT and kV-CBCT images were sized 
at 512 ×  512 pixels. 

The patient group included in the study received prescribed dos-
es of 66–70 Gy for the high-risk planning target volume (PTV_HR), 
59.4 Gy for the intermediate-risk PTV (PTV_IR), and 54.0 Gy for the 
low-risk PTV (PTV_LR). The treatment was delivered in 33 fractions. 
The dose prescriptions for the target volume were reported based 
on the minimum dose required to cover 95% of the target volume 
(D95), as determined from the dose-volume histogram (DVH). The 
Eclipse Treatment Planning System version 16.1 (Varian Medical 
System Inc.) was employed to optimize the treatment plans. The 
plans were optimized using a simultaneous integrated boost-VMAT 
delivery technique on the pCT images. For the OARs, which aligns 
with the guidelines outlined in the RTOG 0225 Report: the maxi-
mum dose (Dmax) to the brain stem was kept below 54.0 Gy. Both 
the left and right parotid glands had 50% of their volume receiving 
a dose below 30 Gy. The Dmax to the spinal cord was limited to less 
than 45.0 Gy. 

2. Image preparation 
To align the pCT images with the kV-CBCT images, a rigid registra-
tion process was conducted using an Open-source Registration 
Graphical User Interface (OpenREGGUI), a MATLAB-based medical 
image processing software. During the registration process, the 
pixel dimensions of the pCT images were resampled to match the 
voxel spacing of the kV-CBCT images, which was set at 0.51 mm ×  
0.51 mm ×  2.00 mm. Due to the incomplete field-of-view of kV-
CBCT images in HNC, kV-CBCT images with incomplete body out-
lines were excluded from the image datasets. Additionally, to en-
sure consistency, a structure representing the area outside the body 
was generated and assigned an air density value of HU for both the 
pCT and kV-CBCT images.  

3. Model architecture  
The U-Net served as the basis for the proposed model in this study. 
The network model was developed using Keras and TensorFlow 
2.9.0, utilizing Python version 3.8. The implementation involved 
NVIDIA CUDA Deep Neural Network Library version 8.1 and Com-
pute Unified Device Architecture version 11.2. All experiments were 
performed on an NVIDIA Quadro RTX 8000 GPU with 48 GB of 
memory. The training process took place within a JetBrains Py-
Charm anaconda environment. The U-Net model, as illustrated in 
Fig. 1, follows a convolutional encoder–decoder network structure. 
The model utilizes pairs of kV-CBCT and pCT images as input and 
generates sCT images as output. The network architecture can be 
divided into two main phases: the encoding phase and the decod-

ing phase. 
The model encodes by downscaling using 2D convolutions, recti-

fied linear unit (ReLU) activation function, and maxpooling in six 
blocks: initial features of 32, increasing by 2; maxpooling of 2 ×  2. 
Encoder reduces the image to 4 ×  4 ×  1024 with final 3 ×  3 con-
volutions, 2048 features. Decoding uses transposed convolutions. 
Each up-sample block has a transposed convolution, concatena-
tion, and two 3 ×  3 convolutions; starting at 2048, features de-
crease by 2; decoder convolutions of 3 ×  3, 32 features. The U-Net 
model is optimized using mean absolute error (MAE) loss. 

4. Model training 
The dataset was split into training and testing sets using an 80% 
and 20% division. This resulted in 2,976 images from 32 patients 
being used for training, while the remaining 515 images from eight 
patients were assigned for testing. Within the training dataset, 20% 
of the data was further allocated for validation purposes. During the 
training process, various hyperparameters were employed, encom-
passing a 1 × 10-3 learning rate, batch size of 8, and 200 epochs. 
These hyperparameters were carefully selected to enhance the 
training procedure and attain optimal model performance. 

5. Model testing 
Following the completion of model training, the model was tested 
on eight independent patient datasets. The performance of the 
predictive sCT images was assessed based on criteria such as HU 
accuracy, image quality, and dosimetric accuracy. A comparative 
analysis was conducted between the pCT and sCT images to assess 
these aspects, employing the following evaluations. 

1) HU accuracy 
The image intensity was assessed by calculating the differences in 
HU values between the pCT and sCT images. MAE and root mean 
square error (RMSE) were employed as metrics in this study, and 
they are calculated using the following equations: 

n
i=1 

|pCTi −sCTi |,
1
n ∑MAE (pCT, sCT ) = (1)

RMSE (pCT, sCT ) = n
i=1 

|pCTi − sCTi |
2,1

n ∑ (2)

where pCT and sCT represent the corresponding pixel values in the 
pCT and sCT images, and n is the total number of pixels in the im-
ages. These metrics were utilized to quantify the differences be-
tween the pCT and sCT images and assess the accuracy of the pre-
dictive sCT images.  
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Fig. 1. U-Net network architecture: training (upper) and testing (lower). pCT, planning computed tomography; sCT, synthetic computed tomog-
raphy; CBCT, cone-beam computed tomography; ReLU, rectified linear unit.

2) Image quality 
The image quality of the generated sCT images was assessed using 
two commonly used metrics: peak signal-to-noise ratio (PSNR) and 
structural similarity index (SSIM). These metrics serve as indicators 
of image similarity and overall quality. PSNR measures the ratio 
between the maximum possible signal power and the power of the 
noise present in the image. A higher PSNR value signifies a more 
remarkable resemblance between the sCT and reference pCT imag-
es. SSIM, on the other hand, gauges the structural similarity be-
tween the sCT and reference pCT images, considering factors such 
as luminance, contrast, and structural information. A higher SSIM 
value indicates a more significant similarity between the images. 
Both PSNR and SSIM metrics were employed in this study to pro-
vide quantitative evaluations of the image quality exhibited by the 

generated sCT images. The calculation of each term can be repre-
sented as follows: 

(3)PSNR (pCT, sCT ) = 20·log10        
MAX (pCT )

RMSE (pCT, sCT ) ,

(2μsCT μpCT+C1)+(2σsCT,pCT+C2)
(μsCT

2+μpCT
2+C1)+(σsCT

2+σpCT
2+C2)

SSIM (pCT, sCT ) =
,

(4)

where 
MAX: Maximum intensity value for both the pCT and sCT images.
μsCT: Mean value of HU (Hounsfield Units) for the sCT image. 
μpCT: Mean value of HU for the pCT image. 

σsCT: Variance of HU values for the sCT image. 
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σpCT: Variance of HU values for the pCT image. 

σsCTpCT: Covariance between HU values of the sCT and pCT images. 
Additionally, the parameters C1 and C2 are used to stabilize the 

division when the denominators are weak. They are calculated as 
follows: C1 = (k1*L)2, where k1 =0.01 and L represents the range of 
HU values in the CT image. C2 = (k2*L)2, where k1 =0.02. 

3) Dosimetric accuracy 
All independent testing datasets of sCT images were imported into 
the Eclipse Treatment Planning System. Due to the field-of-view 
limitation, the pCT images were regenerated with the same volume 
as the sCT images. Image registration was then performed between 
the pCT and sCT images. Subsequently, all structures, including 
PTV_HR, PTV_IR, and OARs, were transferred from the original pCT 
to the sCT, excluding PTV_LR. This exclusion was necessary because 
the field-of-view of the kV-CBCT images did not encompass the 
entire tumor volume as in PTV_LR. Following the structure transfer, 
the dose was re-calculated. The original treatment plan was copied 
and re-calculated using the anisotropic analytical algorithm algo-
rithm with preset monitor unit values from the original plan on 
both the sCT and matched pCT images. The passing rates of 3D 
gamma analysis for the dose distributions on sCT images were 
computed and compared against pCT images under different crite-
ria (3%/3 mm, 3%/2 mm, and 2%/2 mm) with 10% dose threshold. 
Furthermor, The dose difference between the pCT and sCT images 
was assessed in terms of statistical evaluation by measuring met-
rics such as D95% (the dose received by 95% of the volume) to eval-
uate target volume coverage, D2% to assess hotspots within the 
target volume, as well as D50% or Dmax for the OARs.  

Results  

1. HU accuracy and image quality 
Table 1 presents the MAE, RMSE, PSNR, and SSIM values of kV-CBCT 
and sCT images when compared to the reference pCT images. When 
comparing the metrics of the sCT to kV-CBCT images, there was an 
improvement in the values of MAE, RMSE, and PSNR. Specifically, 

Table 1. MAE, RMSE, PSNR, and SSIM values of kV-CBCT and sCT 
images

Image MAE RMSE PSNR (dB) SSIM
kV-CBCT 53.15 ± 40.09 153.99 ± 79.78 47.91 ± 4.98 0.97 ± 0.02
sCT 41.47 ± 30.59 130.39 ± 78.06 49.93 ± 6.00 0.98 ± 0.02

Values are presented as mean ± standard deviation.
kV-CBCT, kilovoltage cone-beam computed tomography; sCT, synthetic 
computed tomography; MAE, mean absolute error; RMSE, root mean 
square error; SSIM, structural similarity index; PSNR, peak signal-to-
noise ratio.

the values decreased from 53.15 ±  40.09 to 41.47 ±  30.59 for MAE, 
from 153.99 ±  79.78 to 130.39 ±  78.06 for RMSE, and increased 
from 47.91 ±  4.98 dB to 49.93 ±  6.00 dB for PSNR, respectively. The 
SSIM of sCT images was 0.98 ±  0.02, which was higher compared to 
the SSIM of kV-CBCT images, which was 0.97 ±  0.02. 

Fig. 2 showcases three axial slices of pCT, kV-CBCT, and sCT im-
ages. The sCT images demonstrate enhanced HU values that closely 
resemble those of pCT images while maintaining the geometric in-
formation present in kV-CBCT images. 

Furthermore, the sCT images effectively reduce streak artifacts 
observed in kV-CBCT images, as indicated by the red arrow in Fig. 2. 

Fig. 3 illustrates the HU line profile across the body of pCT (or-
ange), kV-CBCT (green), and sCT (blue) images. The line profiles in-
dicate that the HU line of sCT images closely resembles that of pCT 
images, particularly at the boundaries of the body. sCT images ex-
hibit reduced artifacts and smoother transitions compared to kV-
CBCT images. Notably, at the interface between soft tissue and air, 
sCT images display a smoother edge compared to kV-CBCT images. 

2. Dosimetric accuracy 
Table 2 presents the 3D gamma passing rates concerning the dose 
distribution within sCT images, assessed using independent testing 
data. The evaluation was conducted utilizing gamma criteria of 
2%/2 mm, 3%/2 mm, and 3%/3 mm. The outcomes reveal passing 
rates of 92.1% ±  3.8%, 93.8% ±  3.0%, and 96.9% ±  2.0%, re-
spectively. These results highlight the remarkable performance of 
the 3D gamma passing rates in capturing the dose distribution 
within sCT images. The observed passing rate consistently main-
tains alignment with acceptable levels, even when subjected to 
slightly more stringent evaluation criteria. 

In Fig. 4, box plots are depicted to showcase the percentage dose 
difference of target volume and OARs when comparing pCT and 
sCT images from eight independent patient datasets. Overall, the 
dose metric outcomes from the sCT-based plan closely resemble 
those obtained from the pCT-based plan. The percentage difference 
in dose for all structures experienced slight changes. The highest 
values fell within a 3% range, except for the parotid glands, where 
values exceeded 3% but remained below 5.2%. The observed devi-
ation, which includes the presence of an anatomical change and 
the utilization of a bolus, can be attributed to patient #6, as de-
picted in Fig. 5. 

Fig. 5 presents the calculated dose distribution using pCT and 
sCT. In patient #7, the dose distribution exhibits a relatively similar 
pattern between the two image sets. However, in patient #6, the 
dose distribution differs significantly due to anatomical changes. 

Fig. 6 showcases the DVH of structures comparing the pCT and 
sCT-based plans for patients #6 and #7. In patient #7, a slight dose 
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Fig. 2. Comparison of three axial slices from planning CT, kV-CBCT, and synthetic CT images. In the synthetic CT images, indicated by the red 
arrow, a reduction in streak artifact is observed compared to the kV-CBCT images. CT, computed tomography; kV-CBCT, kilovoltage cone-beam 
computed tomography.
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difference was observed in the DVH. However, the dose difference 
between the pCT and sCT-based plans was more pronounced in pa-
tient #6. These findings highlight the impact of anatomical chang-
es and the limitations of using kV-CBCT images for generating sCT, 
particularly in capturing accurate target volumes. 

Discussion and Conclusion 

This study aimed to investigate the model for generating sCT imag-
es from kV-CBCT scans using the supervised U-Net deep learning 
algorithm for ART treatment planning in the HNC region. This re-
gion is particularly susceptible to anatomical variations, such as 
weight and tumor size changes. The study focused on assessing the 
accuracy of HU, image quality, and dosimetric accuracy. Four eval-
uation metrics were employed to determine the performance of the 

generated sCT images. HU accuracy was evaluated using the MAE 
and RMSE, while image quality was assessed using PSNR and SSIM. 
In addition, the dosimetric accuracy was evaluated by measuring 
metrics such as D95% and D2% to assess the target volume and D50% 
or Dmax for the OARs. 

Our study's findings are consistent with the results reported by 
Kida et al. [19], Li et al. [23], and Chen et al. [20]. In line with these 
studies, our results likewise indicated a reduction in MAE and 
RMSE values, accompanied by an enhancement in PSNR and SSIM 
values when compared to the original kV-CBCT images. Kida et al. 
[19] utilized a U-Net model structure similar to ours, excluding 
ReLU in transpose convolution, and employed MAE as the loss 
function in the pelvic regions. Our study demonstrates improved 
image quality regarding PSNR and SSIM, with values of 50.9 dB 
and 0.967, respectively. Comparing our study to the work of Li et al. 
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Fig. 3. Axial images (upper) and Hounsfield unit line profiles (lower) of planning CT images (in orange), kV-CBCT images (in green), and synthetic 
CT images (in blue) acquired from independent datasets. CT, computed tomography; kV-CBCT, kilovoltage cone-beam computed tomography.

Table 2. The 3D gamma passing rates (%) of dose distribution in sCT 
images for independent testing data

Gamma critera
2%/2 mm 3%/2 mm 3%/3 mm

92.1 ±  3.8 93.8 ±  3.0 96.9 ±  2.0

[23], a 2D U-Net neural network in HNC was investigated. Our 
study surpasses their MAE, PSNR, and SSIM performance. However, 
RMSE was not considered in their work. They reported MAE, PSNR, 
and SSIM values of 56.89 ±  13.84, 28.80 ±  2.46 dB, and 0.71 ±   
0.032, respectively. However, it is essential to note that Chen et al. 
[20] achieved better HU accuracy metrics results than our study by 
employing a loss function that combined structure dissimilarity and 
MAE. They reported an average MAE, RMSE, PSNR, and SSIM of 
18.98, 60.16, 33.26 dB, and 0.8911, respectively. Among the ob-
served results, the most notable finding is that our study achieved 

the highest SSIM value. This indicates higher similarity and quality 
between our generated sCT images and the reference CT images 
(pCT). The results depicted in Figs. 2 and 3 demonstrated that the 
sCT images achieved better image quality. Notably, the presence of 
scatter artifacts was effectively eliminated, leading to images free 
from disturbances. Furthermore, the smoothness of the synthesized 
images was found to be comparable to that of pCT images. 

According to the HU line profiles of pCT, kV-CBCT, and sCT imag-
es, the sCT images not only successfully eliminated scatter artifacts 
but also demonstrated a higher degree of similarity in HU values to 
the pCT images compared to the kV-CBCT images, especially at the 
body boundaries. At the thyroid cartilage region, all sCT images 
showed better intensity with the reduction from the peak of kV-
CBCT images. The smoothness of soft tissue had improved in all sCT 
images. Although when the HU line crosses through the surround-
ing edge of the air region, such as the outside of the body and sub-
glottic larynx, it indicates that sCT images had rounded corners 

Planning CT Cone-beam CTSynthetic CT

Position

Planning CT
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Fig. 4. The percentage dose difference between the planning CT and synthetic CT-based plans for the target and organs at risk (OARs). CT, com-
puted tomography; PTV, planning target volume; Lt., left; Rt., right.

Fig. 5. Comparison of dose distribution between the planning CT and 
synthetic CT-based plans for patients #6 (left) and #7 (right). The PTV 
70 Gy is visually emphasized in red, while the PTV 59.4 Gy is repre-
sented in orange. The left and right parotid glands are depicted in 
blue and cyan, respectively. CT, computed tomography; PTV, planning 
target volume.

close to pCT images. 
In our analysis of dosimetry, we found that our study had a lower 

gamma passing rate of 2%, 2 mm criteria compared to another 
study. Specifically, our results indicated this rate to be 92.1% ±   
3.8%. Jihong et al. [24] reported a rate of 95.7% ±  1.9% for sCT 
images with uncorrected CBCT and 97.1% ±  1.9% for sCT images 
with corrected CBCT. Meanwhile, Yoo et al. [25] achieved an im-
pressive result of 99.7% ±  0.0% for sCT using a combination loss 
functions for model training. Both studies utilized advanced deep 
learning techniques, with Jihong et al. [24] employing unsupervised 
learning via CycleGAN with HU correction, and Yoo et al. [25] en-
hancing performance through the integration of perceptual loss 
into L1 and structural similarity loss functions during model train-
ing. These findings suggest that unsupervised deep learning and 
specialized loss functions can enhance the quality of sCT images, 
and preprocessing techniques such as HU correction can further 
improve outcomes. 

It is important to note that the presence of registration errors in 
the training data can lead to inaccuracies in the model's perfor-
mance as it may be trained to generate erroneous image predictions. 
In addition, the anatomical changes between the pCT and sCT imag-
es may influence the results of the dose evaluation. Further analysis 
revealed that the outlier data points were primarily associated with 
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Fig. 6. The comparison of dose-volume histogram (DVH) between the pCT and sCT-based plans for patients #6 (upper) and #7 (lower). Squared 
lines represent the DVH of the pCT-based plan, while the triangle lines represent the DVH of the sCT-based plan. pCT, planning computed to-
mography; sCT, synthetic computed tomography; PTV, planning target volume; Lt., left; Rt., right.

one specific patient, precisely patient #6. This particular patient ex-
hibited significant anatomical changes. The parotid gland of patient 
#6 showed higher dose difference values compared to the other pa-
tients. The observed dose uncertainties can be attributed to the fact 
that the anatomical changes in the target volume of patients.  

The U-Net model presents numerous benefits, such as reducing 
global scattering and enhancing local HU accuracy by integrating 
global and local features within the image's spatial domain [20]. 
Moreover, this model offers advantages such as straightforward 
implementation, stable convergence, and the fastest training [26]. 
Nevertheless, a limitation of the model lies in determining the op-

timal number of depths in the encoder–decoder network, which 
depends on the complexity of the training task. Additionally, the 
design of skip connections between the encoder and decoder net-
works lacks a robust theoretical framework. 

While our study demonstrated improvements in HU accuracy, im-
age quality, and dosimetric accuracy, several limitations should be 
acknowledged. Firstly, the limited field-of-view of kV-CBCT images 
restricted the availability of anatomical information, particularly for 
low-risk target volumes in the shoulder region of HNC. This limita-
tion could affect the accuracy of the generated sCT images in those 
areas. Secondly, our study had a relatively small image data sample 
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size for training and testing. A more extensive and diverse dataset 
could yield even better results and provide a more robust evaluation 
of the model's performance accuracy. Additionally, a strategic ap-
proach to dataset enhancement through image augmentation tech-
niques involving translation, inversion, and slight rotation presents a 
viable avenue for further improvement. Thirdly, anatomical changes 
may occur between the pCT and kV-CBCT images due to the time 
gap between image acquisitions (usually taken on separate days). 
These anatomical variations could potentially impact the training of 
the U-Net algorithm, which relies on paired image data. Therefore, 
exploring unsupervised models such as GANs could enhance the 
model's performance, particularly when dealing with unpaired image 
data (intra-individual co-registration) [18,24-30]. Furthermore, the 
process of rigidly registering the CT and CBCT images might not have 
been adequate in establishing the required image similarity for net-
work training. This concern could be mitigated by incorporating de-
formable image registration, which could have been essential for en-
hancing image similarity to a greater extent. In addition, the model 
developed in this study is based on a 2D approach, generating sCT 
images slice-by-slice. To further enhance the performance of the 2D 
model, prior research [20] has proposed the utilization of a volumet-
ric neural network operating in three dimensions. This could involve 
extracting image features more precisely and effectively. Despite 
these limitations, the 2D supervised U-Net model remains a valuable 
tool for improving the accuracy and quality of the sCT generation 
from kV-CBCT images, effectively addressing the challenges posed by 
anatomical variations in HNC patients. 

In conclusion, this study used supervised U-Net deep learning to 
generate sCT images from kV-CBCT scans in patients with HNC. Our 
evaluation focused on assessing the HU accuracy, image quality, and 
dosimetric accuracy of the sCT images. The sCT images produced by 
the U-Net model successfully reduced artifacts and noise while pre-
serving the anatomical structure obtained from the kV-CBCT images. 
The HU accuracy and image quality of the sCT images were close to 
those of the pCT images. Furthermore, regarding dosimetric accuracy, 
the structures in the sCT images, including PTV, and OARs, closely re-
sembled their counterparts in the pCT images. However, it is essential 
to acknowledge that anatomical changes can occur between acquir-
ing pCT and kV-CBCT images. Our findings suggest that the U-Net 
model holds significant potential in generating kV-CBCT-based sCT 
images for ART in HNC patients. This approach offers a convenient 
method of obtaining updated anatomical information without sub-
jecting the patient to additional radiation doses. 
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